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An Approximate Thermal Analysis of Stirling Engine Regenerators

S.H. Park* and Y.-S. Lee**
(Received October 24, 1992)

This paper approximates the transport phenomena in a Stirling engine regenerator to aid its
practical design. The mass flow rates are simplified by a square-wave function and the pressure
variations, by a saw-tooth function with a phase difference. Approximate analytical solutions
obtained in this study agree well with the available numerical solutions. Using the approximate
solutions of the transport phenomena the entropy generation rates in a regenerator are analyti­
cally formulated and calculated, which come from axial conduction loss, imperfect heat regener­
ation, and pressure drop due to fluid friction. The geometry of the minimum entropy generation
rate can represent the optimal design parameters of the regenerator.
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: Thermal conductivity
: Permeability
: Proportionality factor for h t

: Regenerator length
: Working gas mole number
: Exponent for h t

: Pressure
: Defined in Eq. (41)
: Dimensionless pressure
: Conduction heat flux
: Gas constant
: Hydraulic Reynolds number
: Reynolds number defined in Eq. (41)
: Entropy generation per unit area per
cycle

LlS""ole : Molar entropy generation rate
t : Time
T : Temperature
U : Gas velocity
w : Dimensionless axial distance
x : Axial distance
c : Matrix porosity
if; : Shape factor
r : Specific heat ratio
T/ : Effectiveness
f.J. : Viscosity
e : Dimensionless temperature

a : Heat transfer area per unit volume

Aa,Ab : Defined in appendix
Ba,Bb : Defined in appendix
C : Inertia coefficient

Ca,Cb : Defined in appendix
Cp : Gas specific heat at constant pressure
Cs : Solid specific heat
Ct : Coefficient for h,
Cv : Gas specific heat at constant volume

C1a,C1b : Defined in Eq. (13)
d : Wire diameter
d h : Mesh hydraulic diameter
D : Regenerator diameter
Da,Db : Defined in appendix
e : Internal energy
Ea,Eb : Defined in appendix
G : Dimensionless mass flux
G : Mass flux
Gm : Mean value of mass flux
h : Enthalpy
h t : Heat transfer coefficient
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p : Density
r : Time span of a full cycle
rj : Time phase angle between pressure and

mass flux

Superscripts

: per unit time

: per unit area

Subscripts

o : at x=O
([ : for intervals I and III

b : for intervals II and IV
C : Conductive

e Effective
f Working gas

h Hydraulic
H Maximum in p
L : at x=L or minimum in p
p : Hydraulic friction

s : Solid matrix
T : Heat exchange

1. Introduction

A Stirling cycle engine is a mechanical device
that operates on a regenerative thermodynamic

cycle, with cyclic compression and expansion of
the working fluid at different temperature levels.
It covers machines capable of operating a prime

mover, heat pump, refrigerating engine, etc. (Wal­

ker, 1980). A regenerator interconnecting the high
and low temperature parts in the system is used to

increase the system thermal efficiency, receiving
the energy from the working gas flowing from the

high temperature part to the low temperature part
and returning the stored energy to the working
gas returning from the low temperture part to the
high temperture part. In addition, its periodic

operation makes the system relatively insensitive
to plugging by condensible impurities(Acker­

mann and Gifford, 1969; Sahoo and Sarangi,
1988).

The role of the regenerator is simple and its
structure is compact. It, however, is a large

amount of work to analyze the internal transport

phenomena exactly and to utilize the analysis in

designing the regenerator, since the temperature,
pressure, and flow vary significantly during the

operation. The object of this study is, therefore, to

simplify the phenomena, to obtain their analytical

solutions based on the first-law analysis and the
entropy generation rates based on the second-law

analysis, and to find the optimal geometric condi­

tions under which the entropy generation rate is

mlmmum.
These cyclically varying phenomena were anal­

yzed by Rea and Smith(l967) with the simplifica­

tion of stepwise mass flux and saw-tooth pressure

variations in phase. Qvale and Smith(I 968) der­

ived an approximate closed-form solution for the
thermal performance of a Stirling-engine regener­

ator for sinusoidal mass flow rate and pressure
variations with a phase difference relative to mass

flux, using the temperature distribution assumed

by a quadratic polynomial. Modest and Tien
(1973, 1974) considered the effects of real gas

behavior, solid matrix conduction, and finite
matrix heat capacity, showing that the gas­

conduction effects are negligible but the solid­
matrix conduction can be significant. Using the

finite element method, Datta(l985) conducted a

dynamic analysis of a Stirling engine regenerator
with a phase angle 90°. Gedeon(l985) took a first

step to develop a mathematical model for
multidimensional gas flow in the system. Harris et

al.( 1970) discussed the design method of a

regenerator through the decoupling of the irrever­
sibilities based on the first law of ther­
modynamics. Chen et al.( 1984) applied the linear

harmonic analysis to obtain a semi-closed-form
solution to the governing equations and used the

second-law analysis to provide a rational method
for allocating overall efficiency losses to different
loss mechanisms. Kuo( 1989) numerically calcu­
lated the transport phenomena including the ther­

mal dispersion effect of the working gas and also
suggested the optimal designing method based on
the second law of thermadynamics. Since numeri­
cal approaches are more or less involved, a simple
analytical results are often demanded in a practi­
cal design. Therefore, the object of this research is

to obtain simple analytical results of the phenom­

ena and to do an analysis based on the second
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Fig. 1 (a) Schematic of a regenerator

(b) Cyclic variations of pressure and mass
flux at x =0 with a time-phase difference
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where d h is the hydraulic diameter of the matrix,

given as dh=¢}t_~c) In this study, the constant

C, and the exponent n are 0.33 and 0.67, respec­

tively, although they can vary (Ergun. 1952; Rea

and Smith, 1967).

Boundary conditions for Eqs. (I ),( 3) and (5) are

[

G = Go(t),

at x=O Ts= To,
Tf = To (Os: ts: rt and (rt + (2)S: t s: d,

at x= L [T'= TL, (8)
Tf=TL (rts:tS:[I+[2)'

2.2 Assumptions and modeling
The assumptions made in Eqs. (1)-(5) are

(I) The process is one-dimensional and thus, the

CD ap +C~(GT)=h,a(T~T) (3)
R at P ax f c sf'

Gas State

P=PfRT;, (4)

Solid Matrix Energy

PsC)Ja~s=-t-!...ac (Tf - TJ, (5)

where the permeability and inertia coefficient can

be written (Tanaka and Chisaka, 1988) as

~ 32c3d 2
~ 1.6yJ(l- c)

K -T75¢2(l--=-SV and C--1~' (6)

Here, the shape factor if; is 4 for columns(wire

netting), 6.9 for triangular prism(sponge metal),

and 6 for spheres. The heat transfer coefficient h,
and specific surface area a can be ,expressed, re­

spectively, as

C,kfRe~Prt and 4£
d

h
a=(j--;'

Gas Energy

law of thermodynamics.

In the present paper the mass flow rates are

simplified by a square-wave function and the

pressure variations, by a saw-tooth function with

a phase difference to mass flux. While the govern­

ing equations are simplified based on the previous

work done by Rea and Smith(l967), the solutions

are approximated algebraically and compared

with the numerical solutions which were in good

agreement with the experimental measurements

(Rea and Smith, 1967). Using the approximate

solutions of the transport phenomena the entropy

generation rates in a regenerator are analytically

obtained, which are due to axial conduction loss,

imperfect heat regeneration, and pressure drop

due to fluid friction. The geometrical conditions

such as aspect ratio, porosity, mesh size, etc.,

giving the minimum entropy generation rate can

represent the optimal design parameters of the

regenerator with respect to irreversibilities. In

addition, the entropy generation rates of three

common working gases: hydrogen, helium, and

air under the same working condition are calcu­

lated to compare their physical characteristics.

2. First-Law Analysis

2.1 Governing equations
Figure I(a) shows the schematic diagram for a

regenerator of diameter D, length L, and end

temperatures To and T L , which is packed with

porosity c by woven screens of stainless-steel-wire

diameter d. In Fig. I(b) the mass flux at x=O,
Go, of the working gas varies stepwise and the

system pressure P does in a saw-tooth shape with

a time difference [I' in which the period is [.

The governing equations of the transport phe­

nomena in a regenerator can be derived by con­

sidering the conservations of mass, momentum,

and energy over a differential control volume.

Gas Continuity

aG 1 a P
ax = - Rai( T

f
)'

Gas Momentum

ap f-Lc n C 2U2
ax = -K'-'f- PfC f'
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(13)

(21)

(22)

(23)

(24)

(25)

e= ~:. G= go' w

Also, the convection heat transfer coefficient is

correlated as ht=KhGn where K h=0.33 k f Reh3

Pri/ dh Now, the governing equations become

for intervals (I and III)

G de = C Gn-I+....z..=l,
dw oa r

edG =-1
dw '

for intervals( II and IV)

G de - C Gn-I_....z..=l
dw - ob r '

edG =1dw '

(r-l)KhaCla and
where Coa 1 dP I

2rcGod(

(r-l)KhaClb
COb ., dP 1 .

2rcGod(

Boundary conditions become

G dTsb htaCI~ +-...1......1 dP 1=0, (19)
dx 2cCp G Cp dt

dG __1_1 dP 1 (20)
dx - RTsb dt .

To solve the simplified equations the three bound­

ary conditions (8) are required because Cia or
Clb is still unknown and must be determined
from a boundary condition.

2.3 Nondimensionalization and approximate
solutions

To solve Eqs. (17) - (20) the following non­
dimensional variables are introduced

dG 1_1 dP I (16)
dx - RTs dt '

and are simplified by subtracting Eq. (15) from
Eq. (14) and with Eqs. (13) and (16) as

G dTsa htaClr; -...1......1 dP 1=0, (17)
dx 2cCp G Cp dt

dG 1_1 dP I (18)
dx - RTsa dt .

For intervals (II) and (IV), the governing equa­

tions are simplified through the same procedure
as above and the resulting equations are

radial heat conduction loss to the wall is negli­
gible.
(2) The working gas behaves like a perfect gas.
(3) Axial conduction heat transfer is negligible in
the first law analysis.
(4) Thermophysical properties of the working

gas and solid matrix are constant.
L 1:/2

(5) Since f~~ dx ~ f~~ dt, the pressure drop
o 0

in the regenerator is neglected in the first law
analysis and thus the terms on the right hand side

of Eq. (2) disappear.

(6) Since ITf - Tst ~ 1, a(p/Tf ) ~ dP/dt
Ts at Ts

(7) The directions of the flow inside the regener­
ator vary simultaneously with those of the flow at

x=O.
Under the cyclic-steady operation, the follow-

ing conditions are maintained at any position x.

fGdt=O, (9)

f~~ dt=O, (10)

fpsCs aa~s dt= ft-!...ac (Tf - Ts)dt=O, (II)

fGTfdt=const. (12)

The cyclic integral f can be subdivided into four
time-interval integrals such as HI (period I)

+n(2 (II) +nW rJ (III) +n l 2+rJ (IV). Based
on the assumption (7) Eqs.(l1) and (12) are
approximated as

Tfl + Tflll =2 Tsa ,
Tm + TflV = 2 TSb'
G (Tml - Tfl ) = Cia,
G (Tm - Tf/v) = C1b,

where the subscripts a and b represent the pairs
of intervals I and III and intervals II and IV,
respectively.

For intervals (I) and (III), the governing
equations become

Cp fx(GTfl)- h~a(Ts-Tf/H lJil c1J: 1=0,

(14)

- Cp fx (GTf///)- h~a (Ts- Tf///)-lJi 1 c1J: 1=0,

(15)
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Fig. 3 Comparison of approximate solutions with
numerical simulation results for the mass flux
distribution in the intervals I and III
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Fig. 4 Comparison of approximate solutions with
numerical simulation results for the tempera­
ture distribution in the intervalls II and IV

at W=o: G=l. 8=1,

IdPIL
t Cit . 8 = TL = 8 (26)a W= Wmax GoRTo ' To L'

Assuming that pressure and mass flux varia­

tions are in phase, Rea and smith(l967) obtained
Eqs. (24) and (25). They solved numerically and

showed the results graphically for various Cab'
However, the numerical solutions are difticult to

use furthermore. In this study, therefore, analyti­

cal solutions for temperature and mass flux are

obtained approximately for the easy application

of the analysis to the practical design of the

regenerators.
In Eqs. (22) and (24), Gn-l is approximated by

its mean value G:;;-l, where Gm is assumed as

[1 + G ( wmaJ] /2 for intervals ( I ) and OII) and

as 2/[1 +1/ G( Wmax)] for intervals (II) and (IV),
which result in a favorable approximation to the

numerical solutions. Then, addition of Eqs. (22)

to (23) and integration of the resulting equation

give

G=(C4aw+l)-c~a, (27)
8=Aa( Caw+ 1)8a+ Ca( C4a w+ I)Da+ E a, (28)

for intervals ( I ) and (III) and following the same

procedure as above gives

G=( C4bw+l)- C~6-, (29)

8=Ab( C4b W+1)8b+ Cb( CbW + I)Db+ E b, (30)

for intervals (II) and (IV), where C4a= CoaG:;;-1

52 3 4

DIMENSIONLESS DISTANCE W

4

3

C)

><:::>
..J
LL

~
:=i
(/)
(/)

~
Zo
iii
zw
:=i
i5

Fig. 5 Comparison of approximate solutions with
numerical simulation results for the mass flux
distribution in the intervals II and IV
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-1/)' and C4b =Cob G,;:-1+1/)' and other con­

stants are shown in the appendix. The constants

Coa and COb can be obtained by the boundary

condition 8L = 8( Wmax)' They, however, cannot

be explicitly expressed and thus, are shown graph­

ically in Figs. 2 and 4. In Figs. 2- 5 the approxi­

mate analytic solutions are compared with the

numerical solutions, which are solved by the

Runge-Kutta method and are in good agreement

with the experimental results (Rea and Smith,

1967), and result in errors less than three percents.

Therefore, the approximate solutions will be used

to formulate and to calculate the regenerator

effectiveness and the entropy generation rates

through the second-law thermodynamic analysis.

2.4 Regenerator effectiveness.
The ineffectiveness of thermal regenerator is

defined as (Kays and London, 1964; Modest and

Tien, 1973)

_ cyclic total losses (31)
1- TJ - cyclic ideal heat exchange'

where TJ is the thermal effectiveness. Equation

(31) can be written mathematically as

c;fGh dt +fke-ffdt

I-TJ=~-[i-16Ih-dt-lx-~-o'~1 1~lh dtlx~L - (L pfe dxl'-rl ]'
/, IV II. III )0 t=r1+r2

(32)

denominator describes the difference of internal

energy of the gas in the regenerator at the ends of

hot gas and cold gas blow intervals. Using the

appoximate solutions Eq. (32) can be simplified

as

where intervals ( I ) and (IV) are the hot gas flow

ones and intervals (II) and (III) are the cold gas

flow ones. The numerator of Eq. (32) is constant

over the entire length of the regenerator (Modest

and Tien, 1973), if the conduction term is consid­

ered in the energy equations. The last term in the

c;( - n CpCla - r2 C pCl b ) +2n Qoa +2rzQob (33)

Fig. 6 Regenerator effectiveness for various mesh
SIzes

0.7 L-~_-L.-~_-'-_~--'-_~~
0.00 0.02 0.04 0.06 0.08

REGENERATOR LENGTH 1m]

where effective conductivety is k e= k f ( ks/ k f )

(l-nO·59 (Chang, 1990). Here, conduction heat

fluxes at x=O are

(35). _ )'-1
qOb - - C q( COb --)'-),

3. Second-Law Analysis

3.1 Entropy generation.
Because the ineffectiveness defined by Eq. (33)

fails to consider the hydraulic friction loss and

thus, it does not indicate a certain optimal geo­

metric conditions, it is an insufficient measure of

regenerator performance. A second-law analysis

can supply a better measure from which a Stirling

dPkeldtl
where Cq Figure 6 shows the effec-

GoR
tiveness with regenerator lengths for the Ford

4-215 Stirling engine (Urielli and Berchowitz,

1984). Smaller the mesh size is, higher the effec­

tiveness is, since the heat transfer area a between

the fluid and the solid matrix is reciprocally

proprotional to the mesh size d.

(34). _ )'-1
qoa- - Cq(Coa+--),

)'

1.0
20

:::- 50

/J)
0.9/J) 100W

Z
W
> d [).1m) =200i=u

0.8 Iw
LL
u..
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engine design can minimize any source of irrever­

sibility or entropy generation. Entropy generation

per cycle per unit area in the regenerator (Bejan,

1982) can be calculated from

LlS" = [!cGCpln( T)dt - !cGRln(P)dt

+ !-f-dt l~L-[!cGCpln( T)dt

- !cGRln(P)dt +!-f-dt l~(/ (36)

where

A-p',-(C W;'ax+ )+ Rep
LJ a - 4a-2-- Wmax -2 C4a -1

(C4aWmax+1)lz-c-h)-2<f:~1'

and

A-p' (C W;'ax + )+ Rep
LJ b= 4b-2- Wmax -2 C4b -1

)
12+._L.) Rep

(C4b wmax+1 C4b -2C4b+1'

(43)

(44)

(45)

where q is the conduction heat flux which con­

sists of both the gas conduction and soild matrix

conduction.

3.2 Simplification.
Equation (36) can be simplified as follows. The

terms including In( T) are reduced to

Entropy generation due to hydraulic friction can

be approximated as

LlSp=-c[ ( GR Ll
p
P dt Ix=oJII + III

1 . LlP
+ GR~pdtlx=d,

1 +lV

(47)

(48)

____1_-~]
PL+ 2r)PH-,PL) .

l'

Therefore, the molar entropy generation rate In

the regenerator is

l fi 1
npzdt

and thus

where

(37)

with the approximation inO + 0) ~ 0 for 0 <t 1.
Thus, entropy generation due to imperfect heat

exchange is

LlS~ = cCp( Clan + ClbrZ)( }o - J,-;). (38)

Entropy generation due to conduction heat trans­

fer at x=O and L is approximated as

LlS;; =2[~l;LqLar2 (joan to qObl'Z]. (39)

Pressure drop across the bed, which was neglected

in the first law analysis but must be considered in

the second law analysis, can be obtained from the

momentum Eq. (2) using the non-Darcian model.

Through nondimensionalization, it becomes

By integrating Eq. (40) and with the approxima­

tion PI- PJ~2PLlP

dpZ

dw'= - G()- RepGZ(),

where

and

for intervals ( I ) and (III)

for intervals (II) and (IV)

(40)

(41 )

where M is the mole number of the working fluid

entering at x =0 and LlS" =, LlS~+.dS;;+LlS;.

3.3 Results and discussion.
The physical model in calculating entropy

generation rates comes from the Ford 4-215 en­

gine whose working gas is hydrogen (Urieli and

Berchowitz, 1984). Its geometric conditions and

physical variables used in this study are shown in

Table I. Solid matrix properties are based on

stainless steel and gas properties an: on the alge­

braic mean temperature of high and low temper­

ature parts.
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Fig. 7 (a) Entropy generation rates with lengths for
r[=O

(b) Entropy generation rates with lengths for

n=r/4
(c) Entropy generation rates with lengths for

r1 = r/2

Table 1 Parameters used in the calculation of
regenerator effectiveness and entropy gener-
ation rates.

d 36 mm PH 20 MPa

D 73 mm T 1023 K

Frequency 4000 rpm TL 337 K

L 34 mm working gas H2

M 0.2 mole E 0.62

PL II MPa n r/2

Figures 7 (a)-(c) show the entropy generation

rates LISldOle, LIST' LISe> and LISp with regener­
ator lengths for the time-phase difference rl =0,
r/4, and r/2. Irreversibility due to hydraulic
friction, LISp, increases with lengths as expected

in Eq. (42). Its slope for T1 = r/2 in Fig. 7(c) is
not as steep as that for T1 =0 in Fig. 7(a), because

the gas is compressed during the hot gas blowing

and is expanded during the cold gas blowing and
thus, the mass flux reduces along the regenerator

for the case of n = r /2. Irreversibility due to

imperfect heat exchange, LIST' decreases, since

Goa.b and G1a.b decrease with lengths. That due to
conduction heat transfer at both ends of the

regenerator, LISc, decreases monotonously for rl

=0 in Fig. 7(a). For rl = r/2 in Fig. 7(c), how­
ever, it decreases once and increase significantly,

since the conduction loss at x = L /1 La, in Eq.
(39) increases significantly for negative Goa with
lengths as indicated in Fig. 2, while the loss at x
=0, Qoa, decreases. For interval ( I ) under the
subscript 'a' the system pressure increases during

the hot gas blowing. Thus, the gas inside the
regenerator is compressed, less amount of gas

exits the regenerator, and the inside temperature
becomes higher. To satisfy the temperature boun­

dary condition at x = L the slope there becomes
steeper, though it becomes less steep if heat con­
duction terms were included in energy equations.
The effect of inertia drag expressed by C in Eq.
(2) can be emphasized by comparing the solid
line and the symbolic line in Fig. 7(b). The total

entropy generation rate LISldole locates its
minimum near 0.04 m which tells the optimal

length of the regenerator. Although the ditTer-
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ences of LlSMole between n =0 and r/2 are not
negligible, the influence of the phase difference
cannot be related ~o the regenerator design direct­
ly, since the phase difference is determined mainly
by the total mechanism of the Stirling engine, not
by the regenerator itself.

The variation uf LlSMOle with aspect ratio L/D
for the dead volume of the Ford 4-215 engine is

indicated in Fig. 8 for various mesh sizes and in
Fig. 9 for three working gases. In Fig. 8 LlSMole
decreases once and increases for small d, and it
decreases slower for large d and is expected to
increase for large values of L/D. Here, the veloc­
ity increase with L/D and thus, the irreversibility
due to heat transfer decreases with L/D which

describes the early decrease of LlSMole, while that
from pressure drop increases which results in the

later increase of LlSMole.
Figures 9-11 show LlSMole for three kinds of

gases commonly used in the Stirling system: air,
hydrogen, and helium. For smaller heat exchange
area between the working gas and the solid
matrix, helium is the best due to its high conduc­
tivity ; on the other hand, for larger contact area
hydrogen is the best due to its lower viscosity.
However, the differences of minimum irrever­
sibilities between helium and hydrogen are not
great as shown in the figures. In addition, they
also indicate that the change of entropy genera­
tion near the minimum is small compared to the

Fig. 8 Entropy generation rates with aspect ratios
for various mesh sizes
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span of independent variables. Therefore, we can

have large flexibility in designing the regenerator.

In Figs. 8, 10-11 symbolic lines depict Ll8Mo ie
for larger mesh sizes than that of the Ford engine.

It can be noticed that even for larger mesh sizes

we can have low Ll8Moie comparable to those for
smaller sizes, though the optimal conditions move

to increase the heat exchange area considerably.

4. Conclusion

Appoximate analytic solutions are obtained
which are in good agreement with the numerical

solutions for a saw-tooth-type pressure variation
and a square-wave-type mass flow variation with

a phase. The resulting solutions are used to ana­

lytically express the regenerator ineffectiveness

and entropy generation rates.
The second law analysis identifies three sources

of irreversibility such as the imperfect heat ex­

change, heat conduction loss at both ends, and
hydraulic friction which is described by the non­

Darcian momentum equation. The resulting
entropy generation charts are extremely useful for
the optimal design of a regenerator. Finally, futur­
e study is recommended on the effect of lateral
heat transfer to the regenerator housing.
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Appendix

The constants for the approximate solutions in
Eqs. (27)-(30) are

A Coa
a C4a -(n-2) '

B a=l- nC-~'
4a

-1=1 1
Ca - ... y C4a +l'


